

INTERNATIONAL JOURNAL OF RESEARCH IN COMPUTER APPLICATIONS AND ROBOTICS
 www.ijrcar.com

Vol.5 Issue 3, Pg.: 44-53

March 2017

 H i m a n s h i B a b b a r

Page 44

INTERNATIONAL JOURNAL OF

RESEARCH IN COMPUTER

APPLICATIONS AND ROBOTICS

ISSN 2320-7345

SOFTWARE TESTING: TECHNIQUES

AND TEST CASES

Himanshi Babbar

Assistant Professor, dca.himanshi@gmail.com

Chandigarh Group of Colleges, Landran, Mohali, 85570-08265

Abstract: - Software Testing has been considered as the most significant stage of the software development

life cycle. Around 60% of resources and money are cast-off for the testing of software. Testing can be manual or

automated. Software testing is an activity that focuses at assessing the capability of a program and dictates that it

truly meets the quality results. Testing is broadly classified into three levels: Unit Testing, Integration Testing, and

System Testing. Whenever we think of developing any software we always concentrate on making the software bug

free and most reliable. At this point of time Testing is used to make the software a bug free. There are many test

cases that help in detecting the bugs so, in this paper we describe about the most commonly used test cases and

testing techniques for the error detection.

Keywords: Software Testing, Software Testing Strategies, Testing Techniques, Test Cases.

1. INTRODUCTION

1.1 Software Engineering: It is defined as a discipline for developing the high quality system that

allocates with the software development of the software product that uses the clear-cut methods,

techniques, sub-routines and procedures.[17] According to IEEE’s definition, Software Engineering can

be defined as “The application of a systematic, well-defined, disciplined and quantifiable approach to the

development, and maintenance of software and the study of these approaches that is considered as the

application of engineering to software”. Software Engineering is the procedure of making, testing and

documentation of the programs of computer.[16]

1.2 Software Development Life Cycle: SDLC, Software Development Life Cycle is the task that is

being used by the industry of software that helps to design, develop and test the high quality software. [17]

This concept of SDLC is applied to the limit of both hardware and software configurations as we know

that system is comprised of hardware only, software only and the combination of both the configurations.

SDLC authorizes the set of various activities that are to be followed and designed to develop a software

product effective and efficient. The substructure of this includes the list of steps:

INTERNATIONAL JOURNAL OF RESEARCH IN COMPUTER APPLICATIONS AND ROBOTICS
 www.ijrcar.com

Vol.5 Issue 3, Pg.: 44-53

March 2017

 H i m a n s h i B a b b a r

Page 45

Fig. 1 Stages of SDLC

1.3 Software Testing: Software Testing plays a very important task in SDLC. It is an appraisal of the

software that is against the requirements that are collected from the system and the user specifications. [2]

It is defined as the process of executing the program with the purpose of finding the bugs and a procedure

to test the code of computer that it does for what it is designed for. [7] According to Dale

Emery and Elisabeth Hendrickson, Testing is defined as “It is a process of gathering information by

making observations and comparing them to the expectations”.

By whom Testing is done-Testing is being done by all those who are intricate to the software development. [8]

The various professionals are indulged in testing the software:

Project Manager, Software Tester, Software Developer and End Users.

When Testing should be started- The first stage of SDLC is software testing. Starts from the requirement

gathering (Planning) phase to the last stage i.e. Deployment phase. [7] In waterfall model, Testing formally is being

organized in the phase of testing. Testing at the incremental model is implemented at the last of every increment/

iteration and the complete application is being tested at the last.

When Testing should be stopped-Testing the software is an everlasting process. No one can profess that the

software is 100% bug free, instead of testing the software. [7] As the Domain to the input is too large that we cannot

verify each and every input.

http://www.dhemery.com/
http://www.dhemery.com/
http://www.testobsessed.com/

INTERNATIONAL JOURNAL OF RESEARCH IN COMPUTER APPLICATIONS AND ROBOTICS
 www.ijrcar.com

Vol.5 Issue 3, Pg.: 44-53

March 2017

 H i m a n s h i B a b b a r

Page 46

Fig. 2 Software Testing Life Cycle

2. SOFTWARE TESTING STRATEGIES:

There are various testing strategies that are being used for the purpose of testing:

Fig. 3

2.1 Unit Testing- This type of testing is performed at the bottom level by the developers before it is moved to the

team of testing to execute the test cases. [8] It is the smallest module that can be tested and verified at the each

section or lines of code. In this output of one module becomes the input of another module. If the output of any one

of the module fails so then the output to which we give the input also fails. [17]

 So, therefore it is nevertheless better to test each module differently so that there would be less chance of

fails. In this, White box testing method is implemented.

2.1.1 When the Unit testing is accomplished: It is being accomplished prior to Integration Testing.

2.1.2 By whom Unit Testing is accomplished: It is accomplished by developers of software and their peers or very

rarely by the Testers those who are independent.

INTERNATIONAL JOURNAL OF RESEARCH IN COMPUTER APPLICATIONS AND ROBOTICS
 www.ijrcar.com

Vol.5 Issue 3, Pg.: 44-53

March 2017

 H i m a n s h i B a b b a r

Page 47

Popular Tools for Unit Testing are: Mocha, Tape and Jasmine.

2.2 Integration Testing- Integration Testing is performed immediately after the Unit Testing. In this all the

modules are merged together to form a larger module and deter mine are they functioning in a proper way and then

the testing is implemented on the modules. [6] Testing is done so that in case if any bug remained in the Unit

Testing it can be again tested in this testing so as to remove all the bugs.

 The basic idea of integration testing is to test how different parts of the system are grouped or work

together. [7] For example, a unit test for database access code would not be able to talk to a real database but the

integration testing would.

Testing is classified into two parts:

(i) Top-Down Testing

(ii) Bottom-Up Testing

2.2.1 When the Integration Testing is accomplished: It is being accomplished after Unit Testing and before System

Testing.

2.2.2 By whom Integration Testing is accomplished: It is accomplished by either the developers or by the Testers those

who are independent.

Popular Tools for Integration Testing are: Mocha, Tape and Jasmine.

2.3 System Testing- This type of testing is conducted to test the entire system. It is needed to test all the

integrated components to test and verify whether it meets the requirements and the standards of quality. [16] The

basic purpose of the testing is to assess the compliance of the system within the desired specific requirements. In

this, black box testing method is implemented. [17]

2.3.1 When the System Testing is accomplished: It is being accomplished after Integration Testing and before

Acceptance Testing.

2.3.2 By whom System Testing is accomplished: It is accomplished by the Testers those who are independent.

For example: When the pen is fabricated, the body, cap, ink cartridge are tested differently and then unit testing is

performed. When more than two units are organized, they all are combined and integration testing is performed.

When the whole complete pen is consolidated then system testing is performed.

3. TESTING TECHNIQUES/ METHODS:

There are various methods or techniques for testing the software:

1. Black Box Testing

2. White Box Testing

3.1 BLACK BOX TESTING

In this type of testing, the intramural structure/ details of the data item are not known by or accessible to its

user. [2] In this test cases are generated or designed from the Input / Output value only and no knowledge

of design/ code is being required. The testers are only aware of knowing about what is assumed to do, and

not to know how it does. These

Types of test can be functional or non-functional. [9]

INTERNATIONAL JOURNAL OF RESEARCH IN COMPUTER APPLICATIONS AND ROBOTICS
 www.ijrcar.com

Vol.5 Issue 3, Pg.: 44-53

March 2017

 H i m a n s h i B a b b a r

Page 48

Fig. 4

Black Box Testing is named so because as we know that in the tester’s eyes it is named black box but

inner side no one sees. Black Box Testing is also known as Functional testing, Specificational,

Behavioral, Data Driven or Input-Output Driven. [11]

For Example, Without the recognition of the inner details of the website, we test the pages of web by the

use of browser, authorize the input and then test and verify the outputs against the outcome that is

expected. [10]

There are many test cases in Black Box Testing:

I. Equivalence Class Partitioning

II. Boundary Value Analysis

III. Cause Effect Graph

IV. Comparison Testing

3.1.1 Equivalence Class Partitioning: This type of technique partitions the program input domain into the set

of equivalence classes from where we can derive the test cases. This partition is done in such a way

that program’s behavior is same to every input data that is belonging to the similar equivalent class. [2]

 The main idea behind the defining of the equivalent class is to test the code with only one

value that belongs to the equivalence class is as better as testing the software with some other value

that belongs to that equivalence class. [12]

For Example:

 ≤

 1-500

 501 and above

3.1.2 Boundary Value Analysis: It is complementary to partitioning the equivalence class instead of selecting

the arbitrary input value to partition; the equivalence class chooses the values at the extreme end of the

class. [16]

For Example: Programmer may improperly use ≤ instead of <= for a function that computes the square

root of the integer value of the limit 0-5000.

 P= [0, 5000]

 >5000

So therefore, 2 partitions required.

Boundary Value Analysis= [-1, 0, 5000, 5001]

INTERNATIONAL JOURNAL OF RESEARCH IN COMPUTER APPLICATIONS AND ROBOTICS
 www.ijrcar.com

Vol.5 Issue 3, Pg.: 44-53

March 2017

 H i m a n s h i B a b b a r

Page 49

3.1.3 Cause Effect Graph: It is technique of software test design that includes identifying the cases (Input

conditions) and the effects (Output conditions). A weakness of the above mentioned 2 methods are that

they don’t consider the potential combination of input and output condition. [18] It connects the input

classes (causes) to output classes (effects) yielding a directed graph. It utilizes 4 symbols: NOT, OR,

AND, IDENTITY.

Fig. 5

3.1.4 Comparison Testing: For critical applications that are required the fault tolerance, a number of

independent version of the software are developed for the similar specification [6][7] if the output for

each version is same then it is presumed that all the implementations are correct but if output is unique

then the each version is examined to check what is responsible for the different output.

Advantages of Black Box Testing

 Testing is being performed from the view point of user’s.

 Tester and Programmer both are autonomous to each other.

 Test cases can be designed immediately after the completion of specifications.

 Testers don’t know about the languages of programming or how the software

has been accomplished. [13]

INTERNATIONAL JOURNAL OF RESEARCH IN COMPUTER APPLICATIONS AND ROBOTICS
 www.ijrcar.com

Vol.5 Issue 3, Pg.: 44-53

March 2017

 H i m a n s h i B a b b a r

Page 50

3.2 WHITE BOX TESTING

In this type of testing, the intramural structure/ details of the data item is known by or accessible to its

user. In this, test cases are being made based on the code. [6] Programming very well knows about how the

implementation of knowledge is significant.

Fig. 6

White Box Testing is named so because as we know that in the tester’s eyes it is named white box and inner side

everyone sees perfectly. [11] White Box Testing is also known as Glass Box, Structural; Clear Box, Open Box,

Logic Driven, or Path Oriented.

For Example: Basically a tester and a developer studies the code implemented of any field on a webpage, decides

purposefully all the legal and the illegal inputs and verifies the output for the outcome that is expected. And also

decides by studying the code that is implemented.

So, therefore we can say that white box testing is like the work of a mechanic who only needs to know why the car

is not working correctly. [12]

Strategies applied to white box testing are:

 Unit Testing: Within the units the paths are tested.

 Integration Testing: Between the units the paths are tested.

 System Testing: Between the subsystems the paths are tested.

For white box testing, unit testing is applicable.

There are many test cases in White Box Testing:

I. Statement

II. Branch

III. Condition

IV. Path

V. Data Flow

VI. Mutation

VII. Domain and Boundary Testing

VIII. Loop Coverage Testing

IX. Logic Based

X. Fault Based

INTERNATIONAL JOURNAL OF RESEARCH IN COMPUTER APPLICATIONS AND ROBOTICS
 www.ijrcar.com

Vol.5 Issue 3, Pg.: 44-53

March 2017

 H i m a n s h i B a b b a r

Page 51

3.2.1 Statement: This is the easiest and simplest form of white box testing where there is no way to check

where a series of test cases are run in such a way that each statement is being executed at least once.

[14] The idea here is that we have no way to examine that an error existing in the statement or not.

For Example: if (S>1 && t==0)

 x=9;

Therefore, 2 test cases are formed, one is true and the other is false.

3.2.2 Branch/ Edge testing: In this test cases are generated to form each branch condition presuming true and

false values in turn. [15]

For Example: if (……………..&&…………..) // Full condition is checked whether it’s true or

false.

3.2.3 Condition: In this test cases are designed to form each component of a composite conditional

expression. [5] In this part, we verify only the part of the condition.

a. It is the stronger testing than the branch testing.

b. Branch testing is stronger than the statement coverage testing.

c. Conditional coverage requires 2n test cases.

3.2.4 Path Coverage: In this test cases are designed in such a way that all the linearly independent paths of

the control flow graph of the program are executed at least once. [11]

For Example:

Fig. 7

It describes the how the flow of control flow through the program & describes the sequence. [15] A path that is sub

path of the main path that is not considered as linear independent path.

INTERNATIONAL JOURNAL OF RESEARCH IN COMPUTER APPLICATIONS AND ROBOTICS
 www.ijrcar.com

Vol.5 Issue 3, Pg.: 44-53

March 2017

 H i m a n s h i B a b b a r

Page 52

McCabe’s Cyclomatic Complexity:

Fig. 8

Advantages of White Box Testing

 We need not to wait for the GUI to be implemented as testing is began at a very first stage.

 Helps in code optimization.

4. CONCLUSION

 Software testing is the basic activity of software engineering.

 It is an activity that executes the software with the aim of detecting errors or bugs in it.

 This paper describes in detail about the testing techniques, strategies of testing the software.

 Important stages in the process of testing are on the methods of designing the test cases. And it is

impossible to find all the bugs from the software so for that we have designed the number of

testing techniques that can be taken to analyze.

REFERENCES

[1] Available from https://en.wikipedia.org/wiki/Software_testing.

[2] Available from: http://technav.ieee.org/tag/1579/software-testing

[3] Bansal, A; (2014) “A Comparative Study of Software Testing Techniques”,

http://www.ijaprr.com/download/1440480921.pdf.

[4] Bertolino, A; (2007) “Software Testing Research: Achievements, Challenges, Dreams”,

http://selab.netlab.uky.edu/homepage/sw-test-roadmap-bertolino.pdf.

[5] Bertolino, A; (2010) “Software Testing Research and Practice”,

http://www.cis.upenn.edu/~lee/05cis700/papers/Ber03.pdf.

[6] Bertolino, A; (2007) “Software Testing Research: Achievements, Challenges, Dreams”,

http://selab.netlab.uky.edu/homepage/sw-test-roadmap-bertolino.pdf.

[7] Chauhan, R; Singh, I; (2014) “Latest Research and Development on Software Testing Techniques and

Tools”, http://inpressco.com/wp-content/uploads/2014/07/Paper122368-2372.pdf.

INTERNATIONAL JOURNAL OF RESEARCH IN COMPUTER APPLICATIONS AND ROBOTICS
 www.ijrcar.com

Vol.5 Issue 3, Pg.: 44-53

March 2017

 H i m a n s h i B a b b a r

Page 53

[8] Irena, J; (2008) “Software Testing Methods and Techniques”,

http://tir.ipsitransactions.org/2009/January/Paper%2006.pdf.

[9] Kaur, M; Singh, R; (2014) “A Review of Software Testing Techniques”,

https://www.ripublication.com/irph/ijeee_spl/ijeeev7n5_05.pdf.

[10] Kaur, K; Sharma, S; (2015) “A Survey on Software Testing”,

http://www.ijettcs.org/Volume4Issue6/IJETTCS-2015-11-21-31.pdf.

[11] Kaushik, S; Tyagi, K; (2016) “Critical Review on Test Case Generation Systems and Techniques”,

http://www.ijcaonline.org/research/volume133/number7/kaushik-2016-ijca-907916.pdf.

[12] Luo, L; (2015) “Software Testing Techniques Technology Maturation and Research Strategies”,

http://www.cs.cmu.edu/~luluo/Courses/17939Report.pdf.

[13] Sharma, C; Sibal, R; (2013) “A Survey on Software Testing Techniques using Genetic

Algorithm”, https://pdfs.semanticscholar.org/3c1d/f844a948f1401a253e1aeaa453edefc60c96.pdf

[14] Singh, S; Rakshit, M; (2013) “A Review of Various Software Testing Techniques”,

http://www.ijreat.org/Papers%202013/Issue4/IJREATV1I4001.pdf.

[15] Tarika, B; (2014) “Review on Software Testing Techniques”,

http://www.ijritcc.org/download/Review%20on%20Software%20Testing%20Techniques.pdf.

[16] Worwa, K; (2016) “LOGISTICAL ASPECTS OF THE SOFTWARE TESTING PROCESS”,

http://www.research.logistyka-produkcja.pl/images/stories/Numer_22/10.21008j.2083-4950.2016.6.2.5.pdf.

[17] Yadav, P; Kumari, P; (2015) “REVIEW PAPER ON SOFTWARE TESTING”,

http://www.ijirt.org/vol1/paperpublished/IJIRT102003_PAPER.pdf.

 Biography

I am Assistant Professor Himanshi Babbar, working in Chandigarh Group of Colleges, Landran, Mohali,
India. I had done MCA (Masters in Computer Application). My area of research is Cloud Computing and

Software Testing. I have completed by Master of Computer Application’s degree in 2015 from Chitkara

University, Punjab Campus. I have attended a National Conference and presented a paper on “Future
Aspects and challenges of E-commerce” and it was published in National Journal of Biz and Bytes.

