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Abstract

This study uses the mathematical software Mapletferauxiliary tool to evaluate two types of ini@gr We can obtain the
infinite series forms of these two types of intégraainly using geometric seriaad integration term by term. At the same time,
we provide some integrals to do calculation pratiic The research methods adopted in this studghed finding solutions
through manual calculations and verifying theseutsmhs by using Maple. This type of research methotionly allows the
discovery of calculation errors, but also helps ifyothe original directions of thinking from manuahd Maple calculations.

Therefore, Maple provides insights and guidancandigg problem-solving methods
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1. Introduction

As information technology advances, whether compgutan become comparable with human brains to erfo
abstract tasks, such as abstract art similar tepdmtings of Picasso and musical compositionslaimto those of
Beethoven, is a natural question. Currently, tiipears unattainable. In addition, whether computars solve
abstract and difficult mathematical problems andettsp abstract mathematical theories such as tludse
mathematicians also appears unfeasible. Neverthelesseeking for alternatives, we can study wisstistance
mathematical software can provide. This study ohices how to conduct mathematical research usieg th
mathematical software Maple. The main reasons iofuglaple in this study are its simple instructi@m ease of
use, which enable beginners to learn the operagobniques in a short period. By employing the pdue
computing capabilities of Maple, difficult problersan be easily solved. Even when Maple cannot ehitter the
solution, problem-solving hints can be identifigelanferred from the approximate values calculated solutions
to similar problems, as determined by Maple. F@g teason, Maple can provide insights into scientiésearch.
Inquiring through an online support system providéy Maple or browsing the Maple website
(www.maplesoft.com) can facilitate further undemnstiag of Maple and might provide unexpected inggFor the
instructions and operations of Maple, [1]-[7] canddlopted as references.

In calculus and engineering mathematics courses)eaet many methods to solve the integral probJems
including change of variables method, integration gmrts method, partial fractions method, trigontiioe
substitution method, and so on. In this paper, tueysthe evaluation of the following two types oidéfinite
integrals which are not easy to obtain their ansvegrusing the methods mentioned above.
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, where A,5,a,b,c are real numbersh),c #0, and a > |b| We can obtain the infinite series forms of thege

types of integrals mainly using geometric seried amegration term by term; these are the majoultgsn this
study (i.e., Theorems 1, 2). In addition, we obt@io corollaries from these two theorems. As fa #tudy of
related integral problems can refer to [8]-[16]. @ other hand, we provide some integrals to deter their
infinite series forms practically. The research e adopted in this study involved finding soloicthrough
manual calculations and verifying these solutiopsiging Maple. This type of research method noy atibws the
discovery of calculation errors, but also helps ifyothe original directions of thinking from manuahd Maple
calculations. For this reason, Maple provides insigind guidance regarding problem-solving methods.

2. Main Results

Firstly, we introduce one notation and two formulaed in this study.
Notation.

Let z=a+ib be a complex number, where= v-1, a,bare real numbers. We denate the real part ofz by
Re(z), andb the imaginary part ok by Im(z) .

Euler's formula.
e¥ =cosy+isiny, wherey is any real number.

DeMoivre's formula

(cosy +isiny)" = cosny +isinny , wheren is any integery is any real number.
Next, we introduce two important theorems used in this paper.
Geometric series

[es]
> X = % , Wherez is a complex number, arje|<1.
k=0 s

Integration term by term([17])

00

Suppose{gn}n:0 is a sequence of Lebesgue integrable functions defined on erlirit. If > jl |gn| is
n=0
convergent, therj’I Sdan= > L ap -
n=0 n=0

The following is the first major result of this study, wetetmine the infinite series form of indefinite integral (1)

Theorem 1 Supposed,f3,a,b,c are real numbersh,c # 0,a>|b|, and C is a constant. Then the indefinite
integral

J- e sin(Ax + B)
a+bcos(Ax + )
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-2 L Ja+b-+a-b 1 .

=—1[e - csin(Akx + Bk) — Ak cos(Akx + Bk)] + C
b kz=:1( Ja+b++a-b 02+/12k2[ ( BKk) ( LK)]

3
Proof. Letr :%(\/a+ b ++va-b) ,s:%(\/a+ b -+a-b),then

e sin(Ax + B)
a+bcos(Ax + )

_ X sin(Ax + )
=e" 3 3 3
r<+2rscos(Ax+ pB)+s
1 .
— Sin(Ax + S3)
=e* [ S

2
[; + cos(x + /3)) +sin2(Ax + B)

:Lz[r +cos(Ax + B) +isin(Ax + ,B)j
S S

=e™ Om

(; + cos(Ax + B) +isin(Ax + ,B))( + cos(Ax + B) —isin(Ax + ,B)j

r
S

- L e Om (Wherez = e (™X*A))
2 r
s I,y
s
-1 am 1s
rs 1+55
r

S

r

r

< 1 , we can use geometric series)
rs

o k
-1 e™ om > (— E] (because
k=ov

o ko
-1 e om [ [— EJ g~ (Alx +f’3k)} (by DeMoivre's formula)
rs Sl T
-2 ad s K
= Tecx 0y (— —j sin(Akx + Bk)  (by Euler's formula) (4)
k=1\ T

Therefore, the indefinite integral
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k
=T2j sz( —j sin(Akx + Bk)dx

k
0 (— ?j [ e sin(Akx + Bk)dx (using integration term by term)

1
O-‘
=~
1
iy

o k
_ -b_ZDZ [_E] |m[[ecx+i(/1kx+,8k)dx]

-

Im -J‘e(c+i/lk)x+i,6kdx]

2]
:'b_25°°[_z)klm';@(cmmxﬂﬂk}
)

kgL T L c+idk
w k
225 (28) im (C‘Mk) [écx+|(/lkx+,8k):|
b i\ r | c? + A%k?2

o k
ey (—Ej %{csm“kx + Bk) — Ak cos(Akx + Bk)] + C

k
-2 Z[- Va+b-~/a‘bJ L [csin( Ak + k) - Ak cos(Akx + BK)] +C
C +

b 2l Ja+b+a-b A%k 2
|
Using Theorem 1, we immediately obtain the folltg result.
Corollary 1 In Theorem 1, ifc < 0, and lett be any real number, then the improper integral
Iw e sin(Ax + B) i
t a+bcos(Ax + B)
k
_ %[ect él[_ ﬁ; ﬁ] c2 +1/12k2 [csin( Akt + BK) - Ak cos(Akt + k)] (5)

Next, we find the infinite series form of indefiaiintegral (2).
Theorem 2 If the assumptions are the same as Theoremmn thleeindefinite integral

J' eCX[a + m+ bcos(Ax + B)] dx

a+bcos(Ax + )
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[ccos(Akx + BK) + Ak sin(Akx + Bk)] +C  (6)

zz@cxi[_«/a+b—«/a—b]k 1

ol Ja+tb+a-b ) c?+1%?2

Proof. Also let r :%(\/a+ b++a-b) ,s:%(«/a+b ~Ja-b), then
e*[a++vaZ - b2 +bcos(ix + B)]

a+bcos(Ax+ f)

T+ cos(ix + B)
= be™ 0——3S
re+ 2rscos(Ax + B) + s?

% + cos(Ax + )

= %ecx . 2

S (;+cos(/1x+,8)j +sin?(Ax + B)

"+ cos(x + B) +isin(Ax + B)

=P e Re S

2

s (; + cos(x + B) +isin(Ax + ,B)j(; + cos(x + ) — i sin(Ax + ,B)j
= %ecx [Re| — 1 (Wherez = e (X+A)y

s —+z

S

- P ox el 1

rs 1+ Ez

r

w k
= 2e% ERe[ > [— EJ } (by geometric series)
k=ov T

0 k.
= 2e% ERe[ > (— Ej e_'("k’”ﬂk)] (by DeMoivre's formula)
r

k

=2e% 03 (— ?) cos(Akx + Bk)  (by Euler's formula) 7
k=0

Thus, the indefinite integral
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j e*[a + m+ bcos(Ax + 'B)]dx
a +bcos(Ix + B)

S

o k
=20je> 0y, (—?] cos(Akx + Sk)dx
k=0

00 k
=20) (— ?SJ j e™ cos(Akx + Sk)dx  (by integration term by term)
k=0

Re:"ecx+i(/]kx+ﬁk)dx]

Re_ 1 Ee(c+i/lk)x+i,3kJ
[ C+ilk

)

_ zmi _g)k Re:[e(c+Mk)x+i,BkdX]
)
)

[ (c-iik) cx+i(/lkx+ﬂk)}
Re| —=%[&
L c2 +A%k?

00 k
=20% Y [—ij m[ccos(/lkx + BK) + Ak sin( Akx + BK)] + C

[ccos(Akx + Bk) + Aksin(Akx + gk)]+C W

zz@cxi[_\/a+b—\/a—b]k 1

ol Ja+b+ia-b ) c?+ %2

By Theorem 2, we have the following result.

Corollary 2 In Theorem 2, ifc < 0, and lett be any real number, then the improper integral

i e*[a+vaZ - b2 +Dbcos(Ax + B)] o
t

a+bcos(Ax + )

:_ZEEcti{_\/a+b—\/a—b]k 1

Ja+b+Ja-b | c2+2)

72 [ccos(Akt + BK) + Aksin( Akt + gk)]  (8)
k=0

3. Examples
In the following, aimed at the two types of intdgrn this study, we propose four integrals and Tiseorems 1,

2 and Corollaries 1, 2 to determine their infinsigries forms. On the other hand, we use Maple ltulede the
approximations of related definite integrals areirtinfinite series forms for verifying our answers
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Example 1 In Theorem 1, if we takd = 2,5 = n/6,a =5b = 4,c = 3, then the indefinite integral

3X o _ o0 k
j' e~ sin(2x + 77/6) dx :—1[433)(2(—1) 1 35in(2kx+ﬂ)—2kcos(2kx+k_”] +C
5+ 4cos(2x + 77/6) 2 o 2) 9+4k? 6 6

(9)

Therefore, we can determine its definite integraif x =7 /6 to x=n/4,

I”M e sin(2x + 77/6)
7165+ 4c0s(2X + 7T/ 6)

00 k
= Ldnia Z(—EJ 1 35in( Zk”) -2k cos(—2k”j
2 Sl 2) 9+ak? 3 3

00 k
¢ Lrpri2 > (— 1) 1 35in(ﬂj -2k cos(k—”] (10)
2 oL 2) 9+4k? 2 2

Next, we employ Maple to verify the correctnes$ld).
>evalf(int(exp(3*x)*sin(2*x+Pi/6)/(5+4*cos(2*x+Pi/f,x=Pi/6..Pi/4),18);

0.477761126377698869
>evalf(-1/2*exp(3*Pi/4)*sum((-1/2)"k/(9+4*k"2)*(3*m (2*k*Pi/3)-2*k*cos(2*k*Pi/3)),k=1..infinity)+1/2*
exp(Pi/2)*sum((-1/2)"k/(9+4*k"2)*(3*sin(k*Pi/2)-2*kcos(k*Pi/2)),k=1..infinity),18);

0.477761126377698869 + 0.1

The above answer obtained by Maple appears AI€1), it is because Maple calculates by using spdaiaitions
built in. The imaginary part is zero, so can beoigal.

Example 2 In Corollary 1, takingAd =3, 8=n/4,a=6b=-4,c=-2,t=n/2, we obtain the following
improper integral fromx = 77/2 to x = oo

—-2X o 00 _ k
s i =307 £ e | el w57

712 6 — 4cos(3x + 1/ 4) Sl V10 +4/2 ) 4+ 9k?

(11)
We also use Maple to verify the correctness of).(11
>evalf(int(exp(-2*x)*sin(3*x+Pi/4)/(6-4*cos(3*x+P#)),x=Pi/2..infinity),18);

0.000138579315603263011
>evalf(-1/2*exp(-Pi)*sum(((sqrt(10)-sqrt(2))/(sqt@)+sqrt(2))) k/(4+9*k"2)*(-2*sin(7*k*Pi/4)-3*k*cog7*
k*Pi/4)),k=1..infinity),18);

0.000138579315603263014 — 2.91791997136612626-10~1 1

The above answer obtained by Maple also appedt® Imaginary part is very small, so can be igdore

Example 3 In Theorem 2, if we takd = 4, 8 = 5n/4,a =10,b = 8,c = 6, then the indefinite integral
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e®%[16 + 8cos(4x + 577/ 4)]
10 + 8cos(4x + 557/ 4)

00 k
=20y SV L acod ke 2K v aksinf ake + 2K 4 ¢ (12)
k=o. 2/ 36+16k? 4 4

Thus, we obtain its definite integral from=7n/8to x=n/2,

Jmzeﬁx [16 + 8cos(4x + 5/4)] |
/8 10+ 8cos(4x + 57 /4)

00 k
PN Z(-EJ 1 GCO{ 5kn) . 4ksin(5k”J
kson 2) 36+16k2 4 4

0 k
AR (— 1) _r 600{7'(—”) + 4k sin[ﬂ(—nJ (13)
KZow 2) 36+16k? 4 4

We employ Maple to verify the correctness of (18¥alows:
>evalf(int(exp(6*x)*(16+8*cos(4*x+5*Pi/4))/(10+8*ce(4*x+5*Pi/4)),x=Pi/8..Pi/2),18);
6300.26272255804089
>evalf(2*exp(3*Pi)*sum((-1/2)"k/(36+16*k"2)*(6*cof*k*Pi/4)+4*k*sin(5*k*Pi/4)),k=0..infinity)-2*exp
(3*Pil4)*sum((-1/2)"k/(36+16*k" 2)*(6*cos(7*k*Pi/4)A*k*sin(7*k*Pi/4)),k=0..infinity),18);

6300.26272255804091 — 0.1

The above answer obtained by Maple appears Iithginary part is zero, so can be ignored.

Example 4 In Corollary 2, if takingd = 7,8 = -n/6,a =13 b =5,c = —-4,t = 3n/4, then we obtain the infinite
series form of the improper integral from= 37 /4t0 x = 0,

—4x _ o K
I:IT/4 2 25+ 5C0$(7_X 7/0)] dx =-20&7% Z - 1 ;2 - 400{6:”(”) + 7ksin( ejkﬂ]
13+ 5cos(7x - m/6) K=o\ 5/ 16+49K 12 12

(14)

In the following, we employ Maple to verify the cectness of (14).
>evalf(int(exp(-4*x)*(25+5*cos(7*x-Pi/6))/(13+5*cd3*x-Pi/6)),x=3*Pi/4..infinity),18);
0.0000412183133260668986
>evalf(-2*exp(-3*Pi)*sum((-1/5)"k/(16+49*k 2)*(-4*0s(61*k*Pi/12)+7*k*sin(61*k*Pi/12)),k=0..infinity)
,18);
0.0000412183133260668984 — 4.79642242946408952-10™* 1

The imaginary part of the above answer obtaineilaple is very small, so can be ignored.
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4. Conclusion

From the above discussion, we know the geometriessand the integration term by term play sigaificroles
in the theoretical inferences of this study. Intfdlee applications of these two theorems are siktenand can be
used to easily solve many difficult problems; welesvor to conduct further studies on related agfitins. On the
other hand, Maple also plays a vital assistive imlgroblem-solving. In the future, we will extetite research topic
to other calculus and engineering mathematics probland solve these problems by using Maple. Tresadts
will be used as teaching materials for Maple oncatlon and research to enhance the connotatiocal@ilus and
engineering mathematics.
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