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Abstract 

 
This study uses the mathematical software Maple for the auxiliary tool to evaluate two types of integrals. We can obtain the 
infinite series forms of these two types of integrals mainly using geometric series and integration term by term. At the same time, 
we provide some integrals to do calculation practically. The research methods adopted in this study involved finding solutions 
through manual calculations and verifying these solutions by using Maple. This type of research method not only allows the 
discovery of calculation errors, but also helps modify the original directions of thinking from manual and Maple calculations. 

Therefore, Maple provides insights and guidance regarding problem-solving methods. 
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1. Introduction 
 

As information technology advances, whether computers can become comparable with human brains to perform 
abstract tasks, such as abstract art similar to the paintings of Picasso and musical compositions similar to those of 
Beethoven, is a natural question. Currently, this appears unattainable. In addition, whether computers can solve 
abstract and difficult mathematical problems and develop abstract mathematical theories such as those of 
mathematicians also appears unfeasible. Nevertheless, in seeking for alternatives, we can study what assistance 
mathematical software can provide. This study introduces how to conduct mathematical research using the 
mathematical software Maple. The main reasons of using Maple in this study are its simple instructions and ease of 
use, which enable beginners to learn the operating techniques in a short period. By employing the powerful 
computing capabilities of Maple, difficult problems can be easily solved. Even when Maple cannot determine the 
solution, problem-solving hints can be identified and inferred from the approximate values calculated and solutions 
to similar problems, as determined by Maple. For this reason, Maple can provide insights into scientific research. 
Inquiring through an online support system provided by Maple or browsing the Maple website 
(www.maplesoft.com) can facilitate further understanding of Maple and might provide unexpected insights. For the 
instructions and operations of Maple, [1]-[7] can be adopted as references. 

In calculus and engineering mathematics courses, we learnt many methods to solve the integral problems, 
including change of variables method, integration by parts method, partial fractions method, trigonometric 
substitution method, and so on. In this paper, we study the evaluation of the following two types of indefinite 
integrals which are not easy to obtain their answers by using the methods mentioned above.  
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)]cos([ 22

βλ
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, where cba ,,,,βλ  are real numbers, 0, ≠cb , and ba > . We can obtain the infinite series forms of these two 

types of integrals mainly using geometric series and integration term by term; these are the major results in this 
study (i.e., Theorems 1, 2). In addition, we obtain two corollaries from these two theorems. As for the study of 
related integral problems can refer to [8]-[16]. On the other hand, we provide some integrals to determine their 
infinite series forms practically. The research methods adopted in this study involved finding solutions through 
manual calculations and verifying these solutions by using Maple. This type of research method not only allows the 
discovery of calculation errors, but also helps modify the original directions of thinking from manual and Maple 
calculations. For this reason, Maple provides insights and guidance regarding problem-solving methods.  
 

 

2.  Main Results 
 
Firstly, we introduce one notation and two formulas used in this study. 

Notation.  

Let ibaz +=  be a complex number, where 1−=i , ba, are real numbers. We denote a  the real part of z  by 
)Re(z , and b  the imaginary part of z  by )Im( z . 

Euler's formula.  

yiye iy sincos += , where y  is any real number. 

DeMoivre's formula. 

nyiy )sin(cos + nyiny sincos += , where n  is any integer, y  is any real number. 

Next, we introduce two important theorems used in this paper. 

Geometric series. 

z
z

k

k

−
=∑

∞

= 1

1

0

, where z  is a complex number, and 1<z . 

 
Integration term by term. ([17]) 

Suppose { }∞
= 0nng is a sequence of Lebesgue integrable functions defined on an inteval I . If ∑ ∫

∞

= 0n
I ng  is 

convergent, then ∫ ∑ =
∞

=
I

n
ng

0
∑ ∫
∞

=0n
I ng . 

 
The following is the first major result of this study, we determine the infinite series form of indefinite integral (1). 

Theorem 1. Suppose cba ,,,,βλ  are real numbers, 0, ≠cb , ba > , and C  is a constant. Then the indefinite 

integral    

dx
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xe cx
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Therefore, the indefinite integral 
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   Using Theorem 1, we immediately obtain the following result. 

Corollary 1. In Theorem 1, if 0<c , and let t  be any real number, then the improper integral 
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Next, we find the infinite series form of indefinite integral (2). 

Theorem 2. If the assumptions are the same as Theorem 1, then the indefinite integral 
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By Theorem 2, we have the following result. 

Corollary 2. In Theorem 2, if 0<c , and let t  be any real number, then the improper integral 
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3. Examples 
 

In the following, aimed at the two types of integrals in this study, we propose four integrals and use Theorems 1, 
2 and Corollaries 1, 2 to determine their infinite series forms. On the other hand, we use Maple to calculate the 
approximations of related definite integrals and their infinite series forms for verifying our answers.  
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Example 1.  In Theorem 1, if we take 3,4,5,6/,2 ===== cbaπβλ , then the indefinite integral  
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 (9) 

Therefore, we can determine its definite integral from 6/π=x  to 4/π=x , 
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Next, we employ Maple to verify the correctness of (10). 

>evalf(int(exp(3*x)*sin(2*x+Pi/6)/(5+4*cos(2*x+Pi/6)),x=Pi/6..Pi/4),18); 

0.477761126377698869 

>evalf(-1/2*exp(3*Pi/4)*sum((-1/2)^k/(9+4*k^2)*(3*sin(2*k*Pi/3)-2*k*cos(2*k*Pi/3)),k=1..infinity)+1/2* 

exp(Pi/2)*sum((-1/2)^k/(9+4*k^2)*(3*sin(k*Pi/2)-2*k*cos(k*Pi/2)),k=1..infinity),18); 

                               

The above answer obtained by Maple appears  I (1−= ), it is because Maple calculates by using special functions 
built in. The imaginary part is zero, so can be ignored. 

Example 2.  In Corollary 1, taking 2/,2,4,6,4/,3 ππβλ =−=−==== tcba , we obtain the following 

improper integral from 2/π=x  to ∞=x  
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(11) 

We also use Maple to verify the correctness of  (11). 

>evalf(int(exp(-2*x)*sin(3*x+Pi/4)/(6-4*cos(3*x+Pi/4)),x=Pi/2..infinity),18); 

0.000138579315603263011 

>evalf(-1/2*exp(-Pi)*sum(((sqrt(10)-sqrt(2))/(sqrt(10)+sqrt(2)))^k/(4+9*k^2)*(-2*sin(7*k*Pi/4)-3*k*cos(7* 

k*Pi/4)),k=1..infinity),18); 

                               

The above answer obtained by Maple also appears  I, the imaginary part is very small, so can be ignored. 

Example 3.  In Theorem 2, if we take 6,8,10,4/5,4 ===== cbaπβλ , then the indefinite integral  
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Thus, we obtain its definite integral from 8/π=x to 2/π=x , 
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We employ Maple to verify the correctness of (13) as follows: 

>evalf(int(exp(6*x)*(16+8*cos(4*x+5*Pi/4))/(10+8*cos(4*x+5*Pi/4)),x=Pi/8..Pi/2),18); 

6300.26272255804089 

>evalf(2*exp(3*Pi)*sum((-1/2)^k/(36+16*k^2)*(6*cos(5*k*Pi/4)+4*k*sin(5*k*Pi/4)),k=0..infinity)-2*exp 

(3*Pi/4)*sum((-1/2)^k/(36+16*k^2)*(6*cos(7*k*Pi/4)+4*k*sin(7*k*Pi/4)),k=0..infinity),18); 

                                  

 The above answer obtained by Maple appears  I, the imaginary part is zero, so can be ignored. 

Example 4.  In Corollary 2, if taking 4/3,4,5,13,6/,7 ππβλ =−===−== tcba , then we obtain the infinite 

series form of the improper integral from 4/3π=x to ∞=x , 
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(14) 

In the following, we employ Maple to verify the correctness of (14). 

>evalf(int(exp(-4*x)*(25+5*cos(7*x-Pi/6))/(13+5*cos(7*x-Pi/6)),x=3*Pi/4..infinity),18); 

0.0000412183133260668986 

>evalf(-2*exp(-3*Pi)*sum((-1/5)^k/(16+49*k^2)*(-4*cos(61*k*Pi/12)+7*k*sin(61*k*Pi/12)),k=0..infinity) 

,18); 

                                  

 The imaginary part of the above answer obtained by Maple is very small, so can be ignored. 

 

 
 



 

 

 

 

INTERNATIONAL JOURNAL OF RESEARCH IN COMPUTER APPLICATIONS AND ROBOTICS Vol.1 Issue.4, Pg: 14-22 

July 2013 

                   C h i i - H u e i  Y u  

 

Page 22 

4. Conclusion  
 

From the above discussion, we know the geometric series and the integration term by term play significant roles 
in the theoretical inferences of this study. In fact, the applications of these two theorems are extensive, and can be 
used to easily solve many difficult problems; we endeavor to conduct further studies on related applications. On the 
other hand, Maple also plays a vital assistive role in problem-solving. In the future, we will extend the research topic 
to other calculus and engineering mathematics problems and solve these problems by using Maple. These results 
will be used as teaching materials for Maple on education and research to enhance the connotations of calculus and 
engineering mathematics. 
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