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Abstract 

This paper uses the mathematical software Maple for the auxiliary tool to study the differential problem of two types of 
trigonometric functions. We can obtain the closed forms of any order derivatives of these two types of trigonometric functions by 
using finite arithmetic-geometric series, Euler's formula and DeMoivre's formula, and hence greatly reduce the difficulty of 
calculating their higher order derivative values. In addition, we propose some examples to do calculation practically. The research 
methods adopted in this study involved finding solutions through manual calculations and verifying these solutions by using 
Maple. This type of research method not only allows the discovery of calculation errors, but also helps modify the original 
directions of thinking from manual and Maple calculations. Therefore, Maple provides insights and guidance regarding problem-
solving methods. 
 

Keywords: Derivatives, trigonometric functions, closed forms, finite arithmetic-geometric series, Euler's formula, 
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1. Introduction 
As information technology advances, whether computers can become comparable with human brains to perform 

abstract tasks, such as abstract art similar to the paintings of Picasso and musical compositions similar to those of 
Beethoven, is a natural question. Currently, this appears unattainable. In addition, whether computers can solve 
abstract and difficult mathematical problems and develop abstract mathematical theories such as those of 
mathematicians also appears unfeasible. Nevertheless, in seeking for alternatives, we can study what assistance 
mathematical software can provide. This study introduces how to conduct mathematical research using the 
mathematical software Maple. The main reasons of using Maple in this study are its simple instructions and ease of 
use, which enable beginners to learn the operating techniques in a short period. By employing the powerful 
computing capabilities of Maple, difficult problems can be easily solved. Even when Maple cannot determine the 
solution, problem-solving hints can be identified and inferred from the approximate values calculated and solutions 
to similar problems, as determined by Maple. For this reason, Maple can provide insights into scientific research. 
Inquiring through an online support system provided by Maple or browsing the Maple website 
(www.maplesoft.com) can facilitate further understanding of Maple and might provide unexpected insights. For the 
instructions and operations of Maple, [1]-[7] can be adopted as references.  

 

In calculus and engineering mathematics curricula, finding )()( cf n ( the n -th order derivative value of  function 

)(xf  at cx = ), in general, necessary goes through two procedures: Firstly evaluating )()( xf n ( the n -th order 
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derivative of )(xf ), and secondly substituting cx =  to )()( xf n . When evaluating the higher order derivative 

values of a function (i.e. n  is large), these two procedures will make us face with increasingly complex calculations. 
Therefore, to obtain the answers through manual calculations is not an easy thing. In this paper, we mainly study the 
differential problem of the following two types of trigonometric functions 

                                 )( xf
)cos1(2

)1cos()(cos])1([cos)(

x

xnnbanxbnaxaba

−
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, where n  is a positive integer, ba , are real numbers, and x is not the multiple of π2 . We can obtain the closed 
forms of any order derivatives of these two types of trigonometric functions by using finite arithmetic-geometric 
series, Euler's formula and DeMoivre's formula ; these are the major results in this study (i.e., Theorems 1, 2), and 
hence greatly reduce the difficulty of calculating their higher order derivative values. As for the related study of 
differential problems can refer to [8]-[15]. On the other hand, we provide two functions to determine their any order 
derivatives and some higher order derivative values practically. The research methods adopted in this study involved 
finding solutions through manual calculations and verifying these solutions by using Maple. This type of research 
method not only allows the discovery of calculation errors, but also helps modify the original directions of thinking 
from manual and Maple calculations. For this reason, Maple provides insights and guidance regarding problem-
solving methods.  

 
2.  Main Results 
 

Firstly, we introduce a notation and some formulas used in this study. 

Notation.  

Let ibaz +=  be a complex number, where 1−=i , ba, are real numbers. We denote a  the real part of z  by 
)Re(z , and b  the imaginary part of z  by )Im( z . 

Euler's formula.  

yiye iy sincos += , where y  is any real number. 

DeMoivre's formula. 
nyiy )sin(cos + nyiny sincos += , where n  is any integer, y  is any real number. 

 
Before deriving the major results in this study, we need to obtain the formula of finite arithmetic-geometric series.  

Lemma A. Suppose z  is a complex number and 1≠z , n  is a positive integer, and ba,  are real numbers. Then the 
finite arithmetic-geometric series 
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The following is the first result in this study; we obtain the closed forms of any order derivatives of function (1). 

Theorem 1. Suppose x  is not the multiple of π2 , nm ,  are positive integers, and ba,  are real numbers. Let the 
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It follows that any m -th order derivative of )(xf , 
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Next, we determine the closed forms of any order derivatives of function (2). 

Theorem 2. If the assumptions are the same as Theorem 1, and suppose the domain of 
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It follows that any m -th order derivative of )(xg , 
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3. Examples 
 

In the following, we provide two functions to determine the closed forms of their any order derivatives and 
evaluate some of their higher order derivative values practically. On the other hand, we use Maple to calculate the 
approximations of these higher order derivative values and their closed forms for verifying our answers. 
 
Example 1. Suppose the domain of the trigonometric function 
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is { }ZppxRx ∈≠∈ ,2 π   (the case of 3,2,5 === nba  in Theorem 1). 

By Theorem 1, we obtain any m -th order derivative of )(xf , 
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for all x  is not the multiple of π2 . 

Thus, we can determine the 12-th order derivative value of )(xf  at 
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In the following, we use Maple to verify the correctness of (11). 

>f:=x->(3-5*cos(x)+13*cos(3*x)-11*cos(4*x))/(2*(1-cos(x)));  

    
>evalf((D@@12)(f)(5*Pi/6),26); 

18425.93782217350892951 

>evalf(sum(k^12*(5+2*k)*cos(5*k*Pi/6),k=0..3),24); 

18425.9378221735089294727 

Example 2. Assume the domain of the trigonometric function 
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+−=                                                   (12) 

is { }ZppxRx ∈≠∈ ,2 π   (the case of 10,3,7 =−== nba  in Theorem 2). 

Using Theorem 2, we can determine any m -th order derivative of )(xg , 
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for all x  is not the multiple of π2 . 

Hence, we obtain the 23-th order derivative value of )(xg  at 
4

3π−=x , 
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We also use Maple to verify the correctness of (14). 

>g:=x->(7*sin(x)-26*sin(10*x)+23*sin(11*x))/(2*(1-cos(x)));  

    
>evalf((D@@23)(g)(-3*Pi/4),28); 

 

>evalf(-sum(k^23*(7-3*k)*cos(3*k*Pi/4),k=0..10),28); 

 

 
 

4. Conclusion  
 

From the above discussion, we know the finite arithmetic-geometric series, the Euler's formula and the 
DeMoivre's formula play significant roles in the theoretical inferences of this study. In fact, the applications of these 
three formulas are extensive, and can be used to easily solve many difficult problems; we endeavor to conduct 
further studies on related applications.  
On the other hand, Maple also plays a vital assistive role in problem-solving. In the future, we will extend the 
research topic to other calculus and engineering mathematics problems and solve these problems by using Maple. 
These results will be used as teaching materials for Maple on education and research to enhance the connotations of 
calculus and engineering mathematics 
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